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Summary

This paper discusses multiple testing problems in which families of null hypotheses are tested in a
sequential manner and each family serves as a gatekeeper for the subsequent families. Gatekeeping
testing strategies of this type arise frequently in clinical trials with multiple objectives, e.g., multiple
endpoints and/or multiple dose-control comparisons. It is demonstrated in this paper that the parallel
gatekeeping procedure of Dmitrienko, Offen and Westfall (2003) admits a simple stepwise representa-
tion (n null hypotheses can be tested in n steps rather than 2n steps required in the closed procedure).
The stepwise representation considerably simplifies the implementation of gatekeeping procedures in
practice and provides an important insight into the nature of gatekeeping inferences. The derived step-
wise gatekeeping procedure is illustrated using clinical trial examples.
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1 Introduction

Complex multiple testing strategies are becoming increasingly common in a clinical trial setting as
clinical researchers attempt to improve the information/sample size ratio by pursuing multiple objec-
tives representing multiple outcome variables, doses, analysis types (e.g., non-inferiority analysis ver-
sus superiority analysis), etc. (Chen, Luo and Capizzi, 2005; Chen et al., 2005; Dmitrienko et al.,
2005). A gatekeeping testing approach introduced by Maurer, Hothorn and Lehmacher (1995) and
Bauer et al. (1998) provides an efficient way of handling multiple testing problems of this kind. The
gatekeeping approach relies on a sequential formulation of the problem, i.e., null hypotheses corre-
sponding to multiple objectives are grouped into families which are then tested in a sequential man-
ner.

Two types of gatekeeping testing procedures have been studied in the literature, serial and parallel
gatekeeping procedures. Within the serial framework, one tests hypotheses within each family (gate)
using a method that controls the familywise error rate (FWE) for each gate and proceeds to the next
gate when all of the hypotheses in the current gate are rejected (Westfall and Krishen, 2001). A
parallel gatekeeping strategy requires the rejection of at least one hypothesis in each gate (Dmitrienko
et al., 2003).

It is interesting to note a connection between serial and parallel gatekeeping and intersection-union
(IU) and union-intersection (UI) tests, respectively. Serial gatekeeping is analogous to the IU test
(Berger, 1982) in which the null hypothesis, which is a union of several component hypotheses, is
rejected iff all of them are rejected. On the other hand, parallel gatekeeping is analogous to the UI
test in which the null hypothesis, which is an intersection of several component hypotheses, is rejected
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iff at least one of them is rejected. This connection may be useful in building a unified theory of
gatekeeping procedures; however, that is not the purpose of the present paper.

An important difference between serial and parallel gatekeeping approaches is that the former is
based on a straightforward sequential application of unadjusted tests and requires n steps to test n null
hypotheses. By contrast, the parallel gatekeeping approach relies on complex procedures derived using
the closed testing principle (Marcus, Peritz and Gabriel, 1976). In general, the number of computa-
tional steps grows exponentially with n (about 2n calculations need to be performed to test n null
hypotheses). Due to this property, parallel gatekeeping procedures are often considered computation-
ally intractable in clinical applications involving a large number of null hypotheses (e.g., more than 10
null hypotheses).

The problem of finding “shortcuts” for closed testing procedures plays an important role in applica-
tions because it streamlines computational algorithms and leads to considerable savings. Shortcut pro-
cedures considered in the literature typically reduce the number of operations from order-2n to order-n
or order-n2; see, for example, Grechanovsky and Hochberg (1999) and Westfall, Zaykin and Young
(2001).

The goal of this paper is to prove that parallel gatekeeping procedures admit a shortcut. It is shown
that the parallel Bonferroni gatekeeping procedure can be formulated as a stepwise procedure that
requires order-n operations to test n null hypotheses. This simple stepwise representation enables clin-
ical researchers to perform the gatekeeping procedures in a sequential manner by considering one gate
at a time. The stepwise representation also facilitates understanding of the principles underlying the
gatekeeping methodology because it explicitly demonstrates how the rejection of hypotheses in each
gate affects inferences in subsequent gates.

The paper is organized as follows. Section 2 defines the parallel gatekeeping testing approach and
outlines the algorithm for constructing gatekeeping procedures based on the closed testing principle.
Section 3 introduces a stepwise version of the parallel Bonferroni gatekeeping procedure. Section 4
describes a clinical trial example to illustrate the stepwise gatekeeping procedure. Finally, the Appen-
dix provides mathematical details.

2 Parallel Gatekeeping Procedure

In order to introduce a general framework of gatekeeping inferences, consider n null hypotheses tested
in a clinical trial and assume that they are grouped into m families denoted by F1; . . . ;Fm. The ni null
hypotheses in ith family are denoted by Hi1; . . . ; Hini and wi1; . . . ; wini are the weights representing
the importance of these null hypotheses within the family (note that n1 þ . . .þ nm ¼ n, 0 < wij < 1
and wi1 þ . . .þ wini ¼ 1). The common case of equal weights corresponds to wij ¼ 1=ni ðj ¼ 1; . . . ; ni;
i ¼ 1; . . . ;mÞ.

The m families are tested in the following sequential manner. The null hypotheses in F1 are exam-
ined first and tested with a suitable adjustment for multiplicity, e.g., using the Bonferroni test. Next,
the null hypotheses in F2 are tested with an appropriate adjustment for multiplicity provided the
corresponding gatekeeper, F1, is passed. Further, if the gatekeeper F2 was successfully passed, one
examines the null hypotheses in F3 and so on. All of the gatekeepers are assumed parallel, i.e., at
least one null hypothesis must be rejected in a gatekeeper to pass it.

Dmitrienko et al. (2003) introduced the parallel gatekeeping procedure based on the Bonferroni test
for the case of two families of hypotheses (e.g., primary and secondary endpoints in a clinical trial)
and Dmitrienko et al. (2005, Section 2.7) provided a general algorithm for constructing the parallel
Bonferroni gatekeeping procedure for any number of families.

In general, gatekeeping testing procedures are constructed using a rather unwieldy algorithm based
on the principle of closed testing proposed by Marcus, Peritz and Gabriel (1976). Let a be the pre-
specified familywise error rate. To define the parallel gatekeeping procedure for testing the null hy-
potheses in F1; . . . ; Fm at the a level, consider the closed family consisting of all 2n � 1 nonempty
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intersections of these null hypotheses. Let Hij denote the set of all intersection hypotheses in the
closed family that imply Hij, i ¼ 1; . . . ; m, j ¼ 1; . . . ; ni, and, for any intersection hypothesis H, let
dijðHÞ ¼ 1 if H 2 Hij and dijðHÞ ¼ 0 otherwise. For each H, one can define an n-dimensional vector
of hypothesis weights, vijðHÞ, i ¼ 1; . . ., m, j ¼ 1; . . . ; ni, such that

0 � vijðHÞ � 1; vijðHÞ ¼ 0 if dijðHÞ ¼ 0;
Pm
i¼1

Pni

j¼1
vijðHÞ � 1 :

The algorithm for defining the hypothesis weights is given in the Appendix. The weighted Bonferroni
p-value associated with H is given by pH ¼ min

i; j
½pij=vijðHÞ�. For any null hypothesis Hij in F1; . . . ;Fm,

the associated adjusted p-value is eppij ¼ max pH , where the maximum is computed over all H 2 Hij,
and Hij is rejected if eppij � a. The described parallel gatekeeping procedure controls the FWE in the
strong sense at the pre-specified a level (Hochberg and Tamhane, 1987).

3 Stepwise Gatekeeping Procedure

Although the closed testing approach to the construction of gatekeeping procedures provides a means
for testing any number of families of null hypotheses, it is generally quite complicated. In practice, it
is highly desirable to have a simple set of decision rules that can help facilitate the implementation
and interpretation of gatekeeping procedures. Consider, for example, a clinical trial with two families
of null hypotheses denoted by F1 ¼ fH11;H12g and F2 ¼ fH21;H22g. Assume that F1 is a parallel
gatekeeper and the hypotheses within each family are equally weighted, i.e., w11 ¼ w12 ¼ 1=2 and
w21 ¼ w22 ¼ 1=2. These hypotheses may correspond to two co-primary and two secondary outcome
variables as in the acute respiratory distress syndrome example discussed by Dmitrienko et al. (2003).

A close examination of the decision rule underlying the parallel Bonferroni gatekeeping procedure
for testing the four null hypotheses reveals that the procedure has a simple stepwise structure. The
parallel gatekeeping procedure rejects H11 or H12 whenever p11 � a=2 or p12 � a=2, respectively, and
thus the null hypotheses in F1 are tested using a Bonferroni rule. Further, it is easy to show that the
null hypotheses in F2 are tested by utilizing the Holm (1979) test. Specifically, let p2ð1Þ and p2ð2Þ be
the ordered p-values in F2 and H2ð1Þ and H2ð2Þ denote the null hypotheses corresponding to p2ð1Þ and
p2ð2Þ, respectively. Assume first that both H11 and H12 were rejected in F1. In this case, H2ð1Þ is
rejected if p2ð1Þ � a=2 and H2ð2Þ is rejected provided both p2ð1Þ � a=2 and p2ð2Þ � a. If, however, only
one null hypothesis was rejected in F1, it becomes more difficult to find significant outcomes in F2.
Specifically, the gatekeeping procedure rejects H2ð1Þ if p2ð1Þ � a=4 and H2ð2Þ if both p2ð1Þ � a=4 and
p2ð2Þ � a=2.

Interestingly, this simple stepwise decision rule can be extended to the general case involving
m � 2 gatekeepers. This decision rule uses penalized weighted Bonferroni tests for the first m� 1
steps (for the first step, the penalized weighted Bonferroni test reduces to the ordinary weighted Bon-
ferroni test) and a penalized weighted Holm test in the last step as described in the procedure given
below. The tests are called “weighted” because they are based on weighted p-values, qij ¼ pij=wij,
j ¼ 1; . . . ; ni. The tests are called “penalized” because the qij are compared with qia instead of a,
where 0 � qi � 1 represents inverse of the penalty charged (the larger the qi, the smaller the penalty).
It is given by

q1 ¼ 1 and qi ¼
Yi�1

k¼1

Pnk

j¼1
rkjwkj

" #
; i ¼ 2; . . . ;m ;

where rkj ¼ 1 if Hkj is rejected and 0 otherwise. Notice that if more rejections occur in earlier steps
then qi is larger resulting in a smaller penalty; for this reason we refer to qi as the rejection gain
factor. Note that the qi must be calculated sequentially at each step after observing which hypotheses
are rejected at that step.
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3.1 Stepwise procedure in the general case

Step 1 For family F1, use the weighted Bonferroni test to reject H1j iff q1j � a for j ¼ 1; 2; . . . ; n1.
If no H1j is rejected then stop testing and retain all remaining hypotheses; otherwise go to Step 2.

Step k For family Fk, use the penalized weighted Bonferroni test to reject Hkj iff qkj � qka for
j ¼ 1; 2; . . . ; nk. If no Hkj is rejected then stop testing and retain all remaining hypotheses. Otherwise
let k k þ 1. If k < m, return to Step k; otherwise go to Step m.

Step m For family Fm, first order the qmj values as qmð1Þ � � � � � qmðnmÞ. Let Hmð1Þ; . . . ;HmðnmÞ de-
note the corresponding hypotheses and wmð1Þ; . . . ;wmðnmÞ denote their weights. Use the penalized
weighted Holm test to reject HmðjÞ iff

qmðiÞ �
qma

wmðiÞ þ . . .þ wmðnmÞ
for all i ¼ 1; . . . ; j :

This Holm test can be implemented in a stepwise manner by beginning with Hmð1Þ and rejecting it
iff qmð1Þ � qma and then proceeding to test Hmð2Þ, etc. Testing stops as soon as some hypothesis HmðjÞ
cannot be rejected in which case all HmðkÞ for k > j are retained automatically.

The critical values with which the raw p-values are compared, namely, akj ¼ aqkwkj in the penalized
Bonferroni procedure for Steps k ¼ 1; . . . ;m� 1 and amðjÞ ¼ aqmwmðjÞ=½wmðjÞ þ . . .þ wmðnmÞ� in the
penalized Holm procedure for Step m are referred to as adjusted significance levels.

Note that if rij ¼ 0 for all j then qk ¼ 0 for all k > i. As a result, all Hkj 2 Fk would be retained
automatically. Therefore Fk is tested iff all preceding gatekeepers are successfully passed, i.e., if at

least one hypothesis was rejected in F1; . . . ;Fk�1
Pni

j¼1
rijwij > 0; i ¼ 1; . . . ; k � 1

 !
. The penalty one

has to pay for performing multiple inferences in Fk depends on the number of the null hypotheses
rejected in the previously examined gatekeepers. The rejection gain factor, qk, equals 1 and thus no
penalty is paid if all of the null hypotheses were rejected in F1; . . . ;Fk�1. However, the rejection gain
factor decreases with the number of hypotheses rejected in the preceding gatekeepers, which makes it
more difficult to reject hypotheses later in the sequence.

Proposition 3.1 The parallel Bonferroni gatekeeping procedure defined using the closed testing
principle (Section 2) is equivalent to the stepwise gatekeeping procedure.

The proof of the proposition is given in the Appendix.

4 Clinical Trial Example

To illustrate the utility of the stepwise version of the parallel Bonferroni gatekeeping procedure, we
will use the clinical trial in patients with hypertension considered in Dmitrienko et al. (2005, Page
118). This clinical trial was conducted to test the efficacy and safety of four doses of an investiga-
tional drug versus placebo. The four doses will be labeled D1 (lowest dose) through D4 (highest dose)
and placebo will be denoted by P. The primary efficacy endpoint was the reduction in diastolic blood
pressure (measured in mm Hg).

The following hierarchical testing approach was defined prior to the beginning of the study. The
four dose-placebo and four pairwise contrasts of interest were grouped into three families. Since
Doses D3 and D4 were expected to be more efficacious than D1 and D2, the corresponding dose-
placebo comparisons (D3 vs. P, D4 vs. P) were included in Family F1. The other two dose-placebo
comparisons (D1 vs. P, D2 vs. P) were included in Family F2 and Family F3 was comprised of the
four pairwise contrasts (D4 vs. D1, D4 vs. D2, D3 vs. D1, D3 vs. D2). The null hypotheses in the
first two families were to be tested in a parallel manner and null hypotheses within each family were
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equally weighted (w11 ¼ w12 ¼ 1=2, w21 ¼ w22 ¼ 1=2 and w31 ¼ w32 ¼ w33 ¼ w34 ¼ 1=4). The FWE
for the eight null hypotheses was set at a ¼ 0:05.

Hypothesis testing problems of this type arise in a variety of clinical trials with multiple endpoints
when drug developers group these objectives into two or more categories, e.g., primary outcomes,
more important secondary outcomes and tertiary outcomes. One encounters similar hierarchically or-
dered hypotheses in clinical trials designed to test several doses of an experimental drug versus place-
bo or an active control (Denne and Koch, 2002; Dmitrienko et al., 2006).

Table 1 displays the raw p-values for the eight null hypotheses in the hypertension clinical trial
(computed using a two-sample t-test), adjusted p-values produced by the parallel Bonferroni gatekeep-
ing approach based on a closed testing procedure and, finally, adjusted significance levels produced by
the stepwise procedure.

It is instructive to compare the adjusted p-values and adjusted significance levels in Table 1. As
indicated above, the adjusted p-values were obtained using a closed testing procedure by examining
all 28 � 1 ¼ 255 intersection hypotheses in the closed family associated with F1, F2 and F3. By con-
trast, the adjusted significance levels were computed using the stepwise algorithm of Section 3 in
eight steps described below.

We will begin with the two hull hypotheses in Family F1. The adjusted significance levels are
computed using the weighted Bonferroni test (a11 ¼ aw11 ¼ 0:025 and a12 ¼ aw12 ¼ 0:025) and thus
H11 (D4 vs. P) and H12 (D3 vs. P) are rejected. The rejection gain factor for Family F2 is given
by q2 ¼ w11 þ w12 ¼ 1. Given this rejection gain factor, the decision rule for H21 (D2 vs. P) and
H22 (D1 vs. P) is based on comparing p21 ¼ 0:0197 and p22 ¼ 0:7237 to a21 ¼ aq2w21 ¼ 0:025 and
a22 ¼ aq2w22 ¼ 0:025, respectively. Therefore H21 is rejected but H22 is retained. Since only one
hypothesis was rejected in Family F2, the rejection gain factor for the pairwise contrasts in Family F3

is now less than 1, i.e., q3 ¼ q2w21 ¼ 0:5. The null hypotheses H31 (D4 vs. D1), H32 (D4 vs. D2), H33

(D3 vs. D1) and H34 (D3 vs. D2) need to be tested using the penalized Holm test with q3 ¼ 0:5. Note
that the adjusted significance level for p3ðjÞ, j ¼ 1; . . . ; 4, is given by

a3ðjÞ ¼ aq3w3ðjÞ=ðw3ðjÞ þ . . .þ w3ð4ÞÞ :

Comparing the raw p-values to the resulting adjusted significance level, it is easy to see that the
stepwise procedure rejects H31 and H33, whereas H32 and H34 are retained.

One can verify that the decisions based on the stepwise procedure are identical to those based on
the original Bonferroni gatekeeping procedure (the adjusted p-value is no greater than a ¼ 0:05 iff the
corresponding raw p-value is no greater than the adjusted significance level).

988 A. Dmitrienko et al.: Stepwise Gatekeeping Procedures

Table 1 Gatekeeping inferences in the hypertension trial example (P ¼ Placebo,
D1 through D4 denote the four doses of the experimental drug). The adjusted p-val-
ues are computed using the closed testing procedure and adjusted critical values are
derived using the stepwise procedure. The familywise error rate is set at 0.05.

Family Comparison Raw p-value Adjusted p-value Adjusted significance
level

F1 D4-P 0.0008 0.0016 0.0250
D3-P 0.0135 0.0269 0.0250

F2 D2-P 0.0197 0.0394 0.0250
D1-P 0.7237 1.0000 0.0250

F3 D4-D1 0.0003 0.0394 0.0063
D4-D2 0.2779 1.0000 0.0125
D3-D1 0.0054 0.0394 0.0083
D3-D2 0.8473 1.0000 0.0250
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5 Conclusions

This paper introduces a streamlined algorithm for implementing the parallel gatekeeping procedure
based on the Bonferroni test (Dmitrienko et al., 2003). It is shown that the parallel gatekeeping proce-
dure, which was originally formulated as a general closed testing procedure, admits a useful shortcut ––
it is equivalent to a simple stepwise procedure. Using the stepwise procedure, one can test n null
hypotheses in n steps rather than 2n steps required in the general case. The stepwise procedure facil-
itates the implementation of gatekeeping procedures and provides an important insight into the nature
of gatekeeping inferences. The only limitation of the stepwise procedure is that it cannot be used to
compute adjusted p-values.

Appendix

Algorithm for defining hypothesis weights Select an arbitrary intersection hypothesis H from the
closed family corresponding to F1; . . . ;Fm. The hypothesis weights, vijðHÞ, i ¼ 1; . . . ; m; j ¼ 1; . . . ; ni,
are defined using the following stepwise algorithm (Dmitrienko et al., 2005, Section 2.7):

vijðHÞ ¼
vi*ðHÞ dijðHÞ wij if i ¼ 1; . . . ; m� 1 ;

vi*ðHÞ dijðHÞ wij
Pnm

‘¼1
di‘ðHÞ wi‘

�
if i ¼ m ;

8<:
where v1*ðHÞ ¼ 1 and viþ1* ðHÞ ¼ vi*ðHÞ �

Pni

j¼1
vijðHÞ, i ¼ 1; . . . ; m� 1.

Proof of Proposition 3.1 Denote by ri ¼
Pni

j¼1
rij the number of hypotheses rejected in Fi and, with-

out loss of generality, assume that Hi1; . . . ;Hiri are the rejected hypotheses and Hiriþ1 ; . . . ;Hini are the
retained hypotheses in Fi. Unless otherwise specified, all of the references to rejection in the proof are
to rejection by the closed testing procedure.

For F1, the two procedures are equivalent because both reject H1j iff q1j � a. Next consider F2. To
derive the necessary and sufficient condition for rejecting a null hypothesis H2j, j ¼ 1; . . . ; r1, we need
to obtain the corresponding condition for rejecting every intersection hypothesis H 2 H2j. Note that,
for any H 2 H2j \ H1k, where k ¼ 1; . . . ; r1, H is rejected automatically because pH � q1k � a. There-
fore we only need to consider H with d1kðHÞ ¼ 0, k ¼ 1; . . . ; r1. Since pH � p2j=v2jðHÞ, a sufficient
condition for rejecting H is

p2j

v2jðHÞ
¼ p2j

w2jv2*ðHÞ
� q2j

min
H
v2*ðHÞ

� a

and thus we need to find the intersection hypothesis H 2 H2j that minimizes v2*ðHÞ. Now,

min
H

v2*ðHÞ ¼ 1�max
H

Pn1

j¼r1þ1
w1jd1jðHÞ ¼ 1�

Pn1

j¼r1þ1
w1j ¼

Pn1

j¼1
r1jw1j ¼ q2

since r1j ¼ 1, j ¼ 1; . . . ; r1 and r1j ¼ 0, j ¼ r1 þ 1; . . . ; n1. Hence a sufficient condition for rejecting
H is q2j � q2a.

To show that this is also a necessary condition, consider H* ¼
Tn1

i¼r1þ1
H1i \ H2j. For this hypothesis,

as shown above, v2*ðH*Þ ¼ min
H
v1*ðHÞ ¼ q2 and

p
H* ¼ min q1;r1þ1; . . . ; q1n1 ;

q2j

q2

� �
:

By definition, q1j > a, j ¼ r1 þ 1; . . . ; n1, and thus to reject H* we must have

pH* � a() q2j � q2a ;

which is hence also the necessary condition for rejecting H*. Since any H 2 H2j is rejected iff
q2j � q2a, H2j is also rejected iff q2j � q2a.
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Next consider F3. For any H 2 H3j \H1k or H 2 H3j \H2‘, where k ¼ 1; . . . ; r1, ‘ ¼ 1; . . . ; r2, H
is rejected automatically following a similar argument as F2. Therefore consider H that is contained in
H3j but not in H1k or H2‘, k ¼ 1; . . . ; r1, ‘ ¼ 1; . . . ; r2. Since pH � p3j=v3jðHÞ, a sufficient condition
for rejecting H 2 H3j is

p3j

v3jðHÞ
¼ p3j

w3jv3*ðHÞ
� q3j

min
H

v3*ðHÞ
� a :

As before,

min
H

v3*ðHÞ ¼ min
H

v2*ðHÞ
Pn2

j¼1
r2jw2j ¼

Pn1

j¼1
r1jw1j

" # Pn2

j¼1
r2jw2j

" #
¼
Y2

i¼1

Pni

j¼1
rijwij

" #
¼ q3 :

Therefore q3j � q3a is a sufficient condition for rejecting H. To show that this is also a necessary

condition, consider H* ¼
Tn1

i¼r1þ1
H1i

Tn2

i¼r2þ1
H2i \ H3j and use the same argument as in the case of F2.

This proof extends to any Hij 2 Fi, i ¼ 4; . . . ; m� 1.
For Fm, the proof differs from the proof for the previous families because the weights are normal-

ized at the last step and so the weights vmjðHÞ depend not only on vm*ðHÞ and wmj but also on the wmk

values of other Hmk included in H. At the first step, all Hmj are eligible for rejection. To determine
which particular Hmj is the first one eligible for rejection, note that, as shown for the previous fa-
milies, the sufficient condition for rejecting every H 2 Hmj is

pmj

min
H

vmjðHÞ
� a() pmjðwm1 þ � � � þ wmnmÞ

wmj min
H

vm*ðHÞ
� a() qmj �

qma

wmð1Þ þ � � � þ wmðnmÞ
;

where, as before, one can show that

min
H

vm*ðHÞ ¼
Ym�1

i¼1

Pni

j¼1
rijwij

" #
¼ qm :

The above condition holds for at least one Hmj iff it holds for Hmð1Þ since qmð1Þ is the smallest of the
qmj for j ¼ 1; . . . ; nm. The condition can be shown to be necessary by considering

H* ¼
\n1

j¼r1þ1

H1j \ � � �
\nm�1

j¼rm�1þ1

Hm�1; j

\nm

j¼1

HmðjÞ :

This is the first step of the penalized weighted Holm procedure for rejecting Hmð1Þ.
This argument can be extended to testing the next hypothesis. Since Hmð1Þ was rejected, it is now

excluded from H. Therefore the next Hmj to be rejected can be shown to be Hmð2Þ associated with the
smallest of the remaining qmj and the sufficient condition for rejecting every H 2 Hmð2Þ to be

qmð2Þ �
min

H
vm*ðHÞ aPnm

k¼2
wmðkÞ

¼ qmaPnm

k¼2
wmðkÞ

:

This can also be shown to be a necessary condition by considering

H* ¼
\n1

j¼r1þ1

H1j \ � � �
\nm�1

j¼rm�1þ1

Hm�1; j

\nm

j¼2

HmðjÞ :

Using the same argument it can be shown that HmðjÞ is rejected iff

qmðiÞ �
qmaPnm

k¼i
wmðkÞ

for all i � j; j ¼ 1; . . . ;m :
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Hence the equivalence between the parallel gatekeeping procedure defined using the closed testing
principle and the stepwise procedure is established.
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